0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конструкция и технические параметры моделей

Устройство и технические характеристики горизонтально-фрезерного станка

Фрезерная обработка заготовок является одной из ключевых операций по производству стальных изделий. Для выполнения этой операции используют несколько типов оборудования. Наиболее распространенным является горизонтально-фрезерный станок. Для первичного ознакомления с ним требуется изучить специфику расположения компонентов и технические параметры.

Особенности конструкции

Горизонтально-фрезерные станки были одними из первых типов оборудования для выполнения операций по обработке металлических изделий. С их помощью выполняется шлифование, расточку, фрезеровки, а в некоторых моделях – сверление. При этом компоновка моделей зачастую одинакова.

На основании установлена станина, выполняющая функцию опорной стойки. На ее передней части располагается рабочий стол с коробкой передач и движущимися каретками. Они необходимы для смещения поверхности по осям X и Y. В задней части конструкции установлен электродвигатель, соединенный со шпиндельной бабкой через коробку скоростей. Несмотря на столь общее описание, следует учитывать возможные изменения или дополнения, свойственные для конкретной модели.

В зависимости от специфики назначения горизонтально-фрезерные станки могут иметь следующие дополнительные узлы и агрегаты:

  • консольная конструкция. С ее помощью можно изменять положение заготовки относительно фрезы. Некоторые типы оборудования имеют возможность поворота рабочего стола под определенным углом;
  • установка магнитного стола. Для обработки деталей сложной формы рекомендуется применять электромагнитные столы, исключающие надобность механического крепления. Таким образом можно повысить качество фрезерной обработки;
  • станки с ЧПУ. Это современные аналоги классического оборудования. С помощью блока CNC можно задать алгоритм работы станка в автоматическом или полуавтоматическом режиме. Актуальны для приборостроения или при обработке больших заготовок из твердых сортов стали.

В отдельную категорию можно отнести универсальные горизонтально-фрезерные станки. Их назначение – выполнение всего спектра операций по обработке. Для этого в конструкции устанавливают дополнительную шпиндельную головку на гибком приводе. Это дает возможность осуществлять фрезерование сложных элементов.

Одним из главных параметров станка являются характеристики подач рабочего стола. Они определяют скорость обработки металлической заготовки, а также максимально допустимые размеры детали.

Принцип работы оборудования

После ознакомления со спецификой конструкции горизонтально-фрезерного станка и его назначения следует изучить принцип обработки заготовок. Для этого лучше всего проанализировать каждый этап работ и выявить оптимальный режим обработки для конкретного случая.

После установки детали на поверхности рабочего стола и ее фиксации вычисляются режим обработки. Это зависит от конфигурации заготовки и степени ее фрезерования. Затем происходит установка оптимальной фрезы. Именно с ее помощью происходит обработка поверхности. За счет вращения и контакта режущей части инструмента с металлической поверхностью происходит процесс контролируемого удаления материала.

В зависимости от вида работы можно выбрать следующие типы фрез, каждая из которых имеет определенное назначение:

  • плоскостное фрезерование. Для этого необходимо применять цилиндрические фрезы. Они отличаются конфигурацией режущих частей и могут иметь несколько типов зубьев. Их главная функция – удаление определенного объема материала со всей поверхности заготовки;
  • торцевые. Применяются для обработки вертикальных плоскостей. Они могут быть установлены только в универсальные горизонтально-фрезерные станки. Главным отличием от цилиндрических заключается в том, что обработка происходит только за счет контакта вершин режущих поверхностей, в результате чего формируется определенная профильная структура;
  • угловые фрезы. Необходимы для придания кромки детали формы нужной конфигурации.

Кроме этих моделей существуют специальные фрезы, предназначенные для выполнения узкопрофильных операций. Для работы на ученических станках чаще всего устанавливают универсальные режущие инструменты.

Для формирования отверстий применяются концевые фрезы. Аналогичной конструкцией обладают шпоночные. Разница между ними заключается в конфигурации режущей части.

Технические характеристики

Для анализа технических характеристик фрезерного оборудования рекомендуется изучить паспорт конкретной модели. В этом документе указываются не только основные качества, которыми обладает горизонтально-фрезерный станок, но и правила его эксплуатации.

Оборудование этого типа имеет вертикальное расположение компонентов. Поэтому необходимо учитывать общую высоту конструкции. Если же в ней есть возможность установки дополнительного стола – к размерам станка прибавляют его габариты. Средняя масса оборудования составляет от 800 кг до 5-ти тонн.

Для анализа технических возможностей модели необходимо знать такие параметры, которыми должен обладать горизонтально-фрезерный станок:

  • количество оборотов головки шпинделя. Обычно этот параметр варьируется от 400 до 3500 об/мин;
  • число скоростей переключения частоты вращения;
  • характеристики хода стола в продольном поперечном и вертикальном направлении. Учитывается тип подачи – ручная или механическая;
  • мощность силовой установки;
  • наличие системы охлаждения;
  • тип управления – электронный или ручной.

На основании этих данных составляются оптимальные технологические схемы применения фрезеровального оборудования. Также все модели имеют ограничения по массе заготовки и ее габаритах. Чаще всего производитель указывается максимально допустимый вес детали, распложенной в центре стола.

Дополнительная накладная головка может проворачиваться на угол до 360°. Это необходимо учитывать при составлении технологической схемы обработки.

Правила эксплуатации

Помимо обязательных к исполнению требований производителя горизонтально-фрезерного станка в течение всего периода эксплуатации необходимо придерживаться общих рекомендаций и описания правил. В основном они относятся к организации рабочего процесса и соблюдении техники безопасности.

Прежде всего необходимо подготовить рабочее место для установки оборудования. Учитывается его масса и габариты. Важно, чтобы опорная платформа могла частично гасить колебания, возникающие в процессе работы станка. Для этого можно установить специальные опоры с компенсирующими подушками и возможностью регулировки уровня.

Также во время эксплуатации необходимо учитывать такие факторы:

  • при массе заготовки более 20 кг ее монтаж на рабочий стол выполняется с помощью подъемных механизмов;
  • работник не должен надевать защитные перчатки или рукавицы. Это может привести к опасной ситуации;
  • для защиты глаз необходимо применять рабочие очки;
  • при возникновении вибрации станок следует немедленно остановить. Чаще всего это явление происходит из-за неправильной фиксации фрезы;
  • в течение фрезеровки проверяется уровень подачи СОЖ;
  • по окончании работы станок необходимо очистить от металлической стружки.

В случае возникновения аварийных ситуаций эксплуатация оборудования запрещена. Устранением их должны заниматься только специалисты. Попытки выполнить ремонт без должного уровня знаний устройства станка может только усугубить ситуацию.

В видеоматериале показан пример работы на горизонтально-фрезерном станке:

Характеристики моделей

С какой бы системой или ее моделью мы не работали, всегда приходится их характеризовать. И так, чтобы это и нам было удобно, и возможному собеседнику (заказчику, покупа­телю, кол­леге и т. д.) ясно и понятно.

Общепринятой основной элементарной характеристикой сис­темы и ее моделей служит параметр, т. е. величина, представ­ляющая определенное физическое, геометрическое или иное свой­ство объекта. Вид и число параметров, характер их взаим­ных свя­зей и форма представления отличает одну модель от другой и оп­ределяет степень их идеализации по отношению к реальному объ­екту.

В зависимости от назначения технические параметры можно подразделить на функциональные, объектные и вспомогатель­ные.

Функциональные параметры характеризуют выполняемую функцию. Эти параметры в процессе проектирования известны, и создание технической системы заключается в разработке кон­ст­рукции, т. е. материального носителя заданных функций, с тре­буемыми значениями функциональных параметров.

Объектные параметры характеризуют материальный носи­тель этой функции (объект, систему, изделие). К ним относятся его геометрические характеристики (размер, форма, взаимное по­ложение, количество), марка и состояние использованных мате­риалов. При этом марка выступает как обобщенный параметр, объединяющий в себе данные о составе, условиях изготовления и иных свойствах материала. Но для разработчика технической сис­темы, по аналогии с ее элементной базой, существует и уро­вень элементарных параметров, детализация которых вызывает потреб­ность в дополнительных специальных знаниях. По этой причине марка материала является элементарным параметром, скажем, для проектировщика, а его состав — для материаловеда, металлурга.

Отыскание величин объектных параметров является целью про­ектирования. Напомним, что понятие «геометрический пара­метр» включает не только количественные характеристики (раз­меры), но и форму поверхностей и профилей, взаимное располо­жение поверхностей и осей.

Остальные параметры относятся к группе вспомогательных.Они необходимы для обоснования принимаемых решений, ха­рак­теристики свойств системы или модели и т. п.

Состав параметров, и особенно — вспомогательных, для каж­дой конкретной системы и модели различен. Это связано с отли­чиями не только в устройстве отдельных систем, но и в предъяв­ляемых к ним требованиях, условиях применения. Определение же объектных параметров — цель проектирования.

Читать еще:  Устройство и сфера применения культиватора

Например, в качестве функциональных параметров лифта (функция — поднимать груз) будут выступать высота подъема и масса груза, объ­ектных — размеры и форма лифта и марки мате­риалов, из которых он изготовлен. Вспомогательными парамет­рами могут стать скорость подъе­ма, срок службы, запас проч­ности и т. д., т. е. все то, что использовалось при обосновании принимаемых решений, необходимо для характеристики техни­ческих, экономических, социальных и иных свойств изделия и т. п.

Количество параметров, характеризующих поведение не только системы, но и ее модели, очень велико. Для упрощения процесса изучения реальных систем выделяют три уровня их мо­делей, различающиеся количеством и степенью важности учиты­ваемых свойств. Это — принципиальная, структурная и параметри­ческая модели. —

Принципиальные модели или, как их еще называют, мо­дели принципа действия системы отображают ее самые сущест­венные (принципиальные) связи и свойства. Это — основопола­гающие физические явления, обеспечивающие функциониро­вание систе­мы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или иссле­дуемый процесс. Часто стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость мо­дели — максимальной, так чтобы трудоемкость работы с моде­лью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие по­добные модели параметры — функциональные, а также физические характеристики материа­лов.

Работа с моделями принципа действия позволяет опреде­лить перспективные направления разработки (механика, элек­тротехни­ка и т. п.) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или не­магнитные и т. д.).

Графическим представлением этих моделей служат блок-схемы. Они отражают порядок действий, направленных на дости­жение заданных целей (функциональная схема), либо процесс преоб­разования вещества, как материальной основы системы, по­сред­ством определенных энергетических воздействий с целью реа­лизации потребных функций (функционально-физическая схе­ма). На схеме виды и направления воздействия изображаются стрелками, а объекты воздействия — прямоугольниками.

Четкого определения структурной модели не существует. Обычно под ней подразумевают упрощенное графическое изо­бра­жение системы, дающее общее представление о форме, рас­поло­жении и числе наиболее важных ее частей и их взаимных связях. Степень упрощения может быть различной и зависит от полноты исходных данных об исследуемой системе и потреб­ной точности результатов. На практике виды структурных схем могут варьиро­ваться от несложных небольших схем (мини­мальное число частей, простота форм их поверхностей) до близких к чертежу изображе­ний (высокая степень подробности описания, сложность исполь­зуемых форм поверхностей).

Для удобства восприятия на структурных схемах в символь­ном (буквенном, условными знаками) виде указываются парамет­ры, характеризующие свойства отображаемых систем. Исследова­ние схемы позволяет установить соотношения (функциональ­ные, геометрические и т. п.) между этими параметрами, т. е. предста­вить их взаимосвязь в виде равенств и неравенств или в иных выражениях.

Под параметрической моделью понимается математическая модель, позволяющая установить количественную связь между функциональными, объектными и/или вспомогательными пара­метрами. Графической интерпретацией такой модели служит чер­теж системы или ее частей с указанием численных значений пара­метров.

Возможно изображение структурной схемы в масштабе. Та­кую модель относят к структурно-параметрическим. Ее приме­ром служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, ра­диу­сы колес-окружностей и т. д.) нанесены в масштабе, что по­зволяет дать численную оценку некоторым исследуемым харак­теристи­кам.

Параметры модели подразделяются на входные, внутренние и выходные.

Входные (внешние) параметры отражают внешние требования к системе, их значения или характер изменения с той или иной точностью известны. Часть этих параметров, существенно влияю­щих на состояние и характеристики системы, называют управ­ляющими.

Внутренниепараметры характеризуют состояние и свойства самой системы. Их значения вначале неизвестны и определя­ются в процессе исследований модели.

Часть входных и рассчитанных внутренних параметров сис­темы может использоваться в качестве исходных данных для мо­дели другой, взаимосвязанной, системы. Такие параметры назы­ва­ются выходными для рассмотренной системы и входными — для вновь рассматриваемой.

Так, для лифта, входными параметрами будут, например, высота подъема и масса груза, срок службы (они задаются, при­ходят извне), а внутренними — диаметр и материал троса (они определяются, характери­зуют систему и заранее неизвестны). Выходными параметрами будут размеры кабины лифта (явля­ются входными при проектировании шахты лифта).

Раздел II.

Моделирование работы несущих конструкций мостов и тоннелей с использованием универсаль­ных и проблемно-ориентированных программных комплексов.

Введение.

Все автоматизированные системы проектирования (САПР) должны, по Российским законам, соответствовать следующим требованиям стандартов:

Стандарт .08 — 80 классифицирует все САПР по ряду признаков:

1) По типу объекта проектирования. (САПР изделий машиностроения и приборостроения; САПР объектов строительства).

2) Разновидность объекта проектирования.

4) Уровень автоматизации проектирования (меньше 25%- низкий, 25-50%-средний, больше 50%-высокий).

5) Комплексность автоматизации проектирования (одно- многоэтапные и комплексные (интегрированные)).

6) Характер проектных документов (текстовые, графические или совокупность).

7) Кол-во выпускаемых проектных документов( 5 док в год в формате A4- малая производительность,(10 5 -10 6 )-средняя пр-ть,>10 6 -высокая пр-ть).

ГОСТ .21-81 устанавливает виды документов их комплектность по стадиям создания САПР.

Стадии создания не отличаются от стадий разработки технических объектов. Существенное отличие заключается только в разработке плана мероприятий по вводу САПР в действие (задание на строительные работы, санитарно-технические и т.д.).

При синтезе структуры САПР выделяют следующие этапы системного уровня:

1) Сбор данных о содержании и объёмах проектных работ (классы проектируемых объектов, размерность проектных задач). Результатом выполнения 1-ого этапа является ТЭО целесообразности создания САПР.

2) Построение маршрутов проектирования.

3) Установление зависимости между характеристиками моделей проектируемых объектов и требуемыми вычислительными ресурсами.

4) Определение структуры ТО САПР (САПР на отдельном АРМ, на базе ЛВС, 1 или много- уровневых САПР).

5) Выбор таковых ПМК, формулирование заданий на их формирование и адаптацию (использующиеся каталоги, программных средств имеющихся в фондах данной отрасли).

6) Выбор конкретной структуры и методов доступа ЛВС.

7) Составление моделей имитирующих функциональность САПР. По результатам полученным на предыдущих этапах формируется модель САПР как системы массового обслуживания. Моделирование позволяет выявить узкие места в маршрутах проектирования, определить загрузку узлов ЛВС, оценить проект САПР в целом.

8) Технико-экономический анализ проекта САПР. Оформление требуемой по ГОСТ 23501-81 документации, согласование сроков разработки и внедрения отдельных подсистем.

На сегодня САПР рассматривается как один из компонентов цепочки:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9138 — | 7301 — или читать все.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

3. Характеристики моделей

С какой бы системой или ее моделью мы не работали, всегда приходится их характеризовать. И так, чтобы это и нам было удобно, и возможному собеседнику (заказчику, покупа­телю, кол­леге и т. д.) ясно и понятно.

Общепринятой основной элементарной характеристикой сис­темы и ее моделей служит параметр,т. е. величина, представ­ляющая определенное физическое, геометрическое или иное свой­ство объекта. Вид и число параметров, характер их взаим­ных свя­зей и форма представления отличает одну модель от другой и оп­ределяет степень их идеализации по отношению к реальному объ­екту.

В зависимости от назначения технические параметры можно подразделить на функциональные, объектные и вспомогатель­ные.

Функциональныепараметры характеризуют выполняемую функцию. Эти параметры в процессе проектирования известны, и создание технической системы заключается в разработке кон­ст­рукции, т. е. материального носителя заданных функций, с тре­буемыми значениями функциональных параметров.

Объектныепараметры характеризуют материальный носи­тель этой функции (объект, систему, изделие). К ним относятся его геометрические характеристики (размер, форма, взаимное по­ложение, количество), марка и состояние использованных мате­риалов. При этом марка выступает как обобщенный параметр, объединяющий в себе данные о составе, условиях изготовления и иных свойствах материала. Но для разработчика технической сис­темы, по аналогии с ее элементной базой, существует и уро­вень элементарных параметров, детализация которых вызывает потреб­ность в дополнительных специальных знаниях. По этой причине марка материала является элементарным параметром, скажем, для проектировщика, а его состав — для материаловеда, металлурга.

Читать еще:  Назначение и устройство

Отыскание величин объектных параметров является целью про­ектирования. Напомним, что понятие «геометрический пара­метр» включает не только количественные характеристики (раз­меры), но и форму поверхностей и профилей, взаимное располо­жение поверхностей и осей.

Остальные параметры относятся к группе вспомогательных. Они необходимы для обоснования принимаемых решений, ха­рак­теристики свойств системы или модели и т. п.

Состав параметров, и особенно — вспомогательных, для каж­дой конкретной системы и модели различен. Это связано с отли­чиями не только в устройстве отдельных систем, но и в предъяв­ляемых к ним требованиях, условиях применения. Определение же объектных параметров — цель проектирования.

Например, в качестве функциональных параметров лифта (функция — поднимать груз) будут выступать высота подъема и масса груза, объ­ектных — размеры и форма лифта и марки мате­риалов, из которых он изготовлен. Вспомогательными парамет­рами могут стать скорость подъе­ма, срок службы, запас проч­ности и т. д., т. е. все то, что использовалось при обосновании принимаемых решений, необходимо для характеристики техни­ческих, экономических, социальных и иных свойств изделия и т. п.

Количество параметров, характеризующих поведение не только системы, но и ее модели, очень велико. Для упрощения процесса изучения реальных систем выделяют три уровня их мо­делей, различающиеся количеством и степенью важности учиты­ваемых свойств. Это — принципиальная, структурная и параметри­ческая модели. —

Принципиальные моделиили, как их еще называют,мо­дели принципа действиясистемы отображают ее самые сущест­венные (принципиальные) связи и свойства. Это — основопола­гающие физические явления, обеспечивающие функциониро­вание систе­мы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или иссле­дуемый процесс. Часто стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость мо­дели — максимальной, так чтобы трудоемкость работы с моде­лью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие по­добные модели параметры — функциональные, а также физические характеристики материа­лов.

Работа с моделями принципа действия позволяет опреде­лить перспективные направления разработки (механика, элек­тротехни­ка и т. п.) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или не­магнитные и т. д.).

Графическим представлением этих моделей служат блок-схемы. Они отражают порядок действий, направленных на дости­жение заданных целей (функциональная схема), либо процесс преоб­разования вещества, как материальной основы системы, по­сред­ством определенных энергетических воздействий с целью реа­лизации потребных функций (функционально-физическая схе­ма). На схеме виды и направления воздействия изображаются стрелками, а объекты воздействия — прямоугольниками.

Четкого определения структурной моделине существует. Обычно под ней подразумевают упрощенное графическое изо­бра­жение системы, дающее общее представление о форме, рас­поло­жении и числе наиболее важных ее частей и их взаимных связях. Степень упрощения может быть различной и зависит от полноты исходных данных об исследуемой системе и потреб­ной точности результатов. На практике виды структурных схем могут варьиро­ваться от несложных небольших схем (мини­мальное число частей, простота форм их поверхностей) до близких к чертежу изображе­ний (высокая степень подробности описания, сложность исполь­зуемых форм поверхностей).

Для удобства восприятия на структурных схемах в символь­ном (буквенном, условными знаками) виде указываются парамет­ры, характеризующие свойства отображаемых систем. Исследова­ние схемы позволяет установить соотношения (функциональ­ные, геометрические и т. п.) между этими параметрами, т. е. предста­вить их взаимосвязь в виде равенств и неравенств или в иных выражениях.

Под параметрической модельюпонимается математическая модель, позволяющая установить количественную связь между функциональными, объектными и/или вспомогательными пара­метрами. Графической интерпретацией такой модели служит чер­теж системы или ее частей с указанием численных значений пара­метров.

Возможно изображение структурной схемы в масштабе. Та­кую модель относят к структурно-параметрическим.Ее приме­ром служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, ра­диу­сы колес-окружностей и т. д.) нанесены в масштабе, что по­зволяет дать численную оценку некоторым исследуемым харак­теристи­кам.

Параметры модели подразделяются на входные, внутренние и выходные.

Входные (внешние)параметры отражают внешние требования к системе, их значения или характер изменения с той или иной точностью известны. Часть этих параметров, существенно влияю­щих на состояние и характеристики системы, называют управ­ляющими.

Внутренние параметры характеризуют состояние и свойства самой системы. Их значения вначале неизвестны и определя­ются в процессе исследований модели.

Часть входных и рассчитанных внутренних параметров сис­темы может использоваться в качестве исходных данных для мо­дели другой, взаимосвязанной, системы. Такие параметры назы­ва­ются выходнымидля рассмотренной системы и входными — для вновь рассматриваемой.

Так, для лифта, входными параметрами будут, например, высота подъема и масса груза, срок службы (они задаются, при­ходят извне), а внутренними — диаметр и материал троса (они определяются, характери­зуют систему и заранее неизвестны). Выходными параметрами будут размеры кабины лифта (явля­ются входными при проектировании шахты лифта).

Технические параметры, виды и сборка своими руками токарных станков по дереву

Токарные станки по дереву и его особенности, технические характеристики. Виды, конструктивные элементы, требования к станкам. Сборка своими руками.

Деревянные конструкции и предметы требуют специальной обработки перед покраской. Получить сложные формы или гладкую поверхность можно, пользуясь токарным станком по дереву. Агрегат обладает функциями и возможностями, которые позволяют мастеру получать заготовки разной формы, размера и объема. Устройства могут быть установлены в цехах деревообрабатывающих предприятий или в домашней мастерской. Перед началом работы рекомендуется внимательно изучить их строение, основные технические параметры и характеристики устройств, которые представляет выбранный модельный ряд.

Что может токарный станок по дереву: технические параметры агрегата

Выполнение сложных операций с деревом требует наличия инструментов и опыта. Некоторые виды работ невозможно осуществить без станка. Он позволит сэкономить время и получить деталь или заготовку с идеальными параметрами.

По техническим показателям оборудование является функциональным, производительным и способным с точностью до миллиметра выпиливать дерево.

Виды деревообрабатывающих станков

Выделяют 3 разновидности токарных станков для обработки дерева. Различия состоят в их назначении и основных функциях:

  • промышленные – агрегаты используются на предприятиях, фабриках, устанавливаются в цехах;
  • полупрофессиональные – станки предназначены для использования на небольших фабриках, где выработка продукции производится в небольших объемах;
  • бытовые (настольные) – приборы применяются для изготовления деревянных деталей в домашних условиях.

Промышленные устройства показывают высокую производительность. Их преимущества:

  • способность выполнять большой объем работы;
  • функциональность;
  • надежность.

Масса конструкции от 200 кг, мощность – от 1 кВт.

Полупрофессиональные токарные станки по дереву компактные, масса 40-90 кг, показатели мощности 0,5-1 кВт.

Станок бытовой используется для обработки 1-2 деталей за один раз. Масса установки составляет 20-40 кг, показатели мощности – 0,2-0,5 кВт. Агрегаты для использования в домашних условиях отличаются минимальным набором функций. Отличия имеются по производительности и возможностям, также методикам выполнения работы. Виды бытовых станков:

  • фрезерные устройства (применяются в 90% случаев для расточки пазов);
  • винтовые (нанесение резьбы, придание детали формы конуса);
  • копировально-фрезерные устройства (применяются для получения заготовок в нестандартных формах, для работы применяются специализированные трафареты);
  • рейсмусовые (обстругивание доски).

Также выпускаются устройства с ЧПУ. Это автоматические агрегаты, которые выполняют этапы работы по заданной программе.

Основные конструктивные элементы

Устройство токарного станка по дереву определяет его возможности. Основные элементы конструкции, которые присутствуют у станков любых видов:

  • рама;
  • передняя и задняя бабка;
  • электропривод;
  • блок контроля скорости;
  • фиксаторы;
  • зажимы;
  • подручники.

Раму имеет любое устройство, так как она является каркасом для станка. Передняя бабка является подвижной частью станка, которая служит для удержания в заданном направлении деревянной заготовки. Задняя бабка относится к съемным частям. Она требуется для обеспечения прочной и надежной фиксации деревянного элемента.

Читать еще:  О бренде pit

Электропривод обеспечивает вращение в одну сторону (асинхронный). Блок для контроля скорости позволяет сделать выбор, как будет вращаться станок. Показатели 2000-5000 об/мин. Фиксаторы и зажимы позволяют расположить деревянную заготовку так, чтобы работать с ней было удобно, и она не могла сдвинуться или упасть. Подручник – элемент, который позволяет выполнять работы по обрезке и декорированию деревянной заготовки.

Для повышения точности выполняемых действий требуется, чтобы оператор обращал внимание на положение деревянных конструкций на рабочей поверхности. Необходимо больше ориентироваться на функционирование электропривода, так как он обеспечивает постоянное движение станка. В 90% случаев этот элемент является трехфазным.

Внимание! Для подключения токарного станка требуется подведение линии на 380 В.

Технические требования к двигателю

Выбирая устройство для дома или небольшого предприятия, нужно помнить, что технические требования к двигателю, следующие: обороты не должны превышать показателей в 1500 об/мин. Подключение к источнику электричества производится по схеме «Звезда» или «Треугольник».

Габариты станка

В 90% случаев готовые станки имеют следующие показатели по габаритам:

  • длина – 0,8 м;
  • ширина – 0,4 м;
  • высота – 0,35 м.

Показатели позволяют работать с заготовками древесины, диаметр которых 25 см, длина – до 20 см. В этом случае можно не пользоваться для улучшения фиксации задней бабкой. Она потребуется, если длину заготовки нужно увеличить до 40 см. Станок с такими показателями маленький, что позволяет установить его в любое удобное место в мастерской.

Что лучше: сделать самому или купить готовый?

Токарный станок можно приобрести готовый или создать своими руками. В первом случае исключены любые ошибки. Все функциональные или технические возможности будут проверены на производстве, неполадки устранят до момента попадания агрегата в продажу. Самодельный станок позволит адаптировать его к особенностям работы мастера, включить необходимые функции или убрать элементы, которые не будут задействованы в процессе производства.

Габариты легко подогнать под имеющееся помещение для цеха или мастерской, но в случае самостоятельного изготовления требуется наличие определенных знаний и умений. Все этапы производства должны соответствовать чертежам. Обычный или настольный станок потребует отладки от мастера, поэтому без навыков в подобной работе лучше не начинать создание агрегата.

Как изготовить токарный станок по дереву самостоятельно

Изготовление токарного станка для обработки дерева требует соблюдения определенных правил:

  • привод – старый, но исправно работающий инструмент для заточки ножей с двумя точильными камнями;
  • задняя бабка может быть изготовлена из элементов мощной электрической дрели;
  • передняя бабка формируется из точильного инструмента;
  • металлический профиль используется для изготовления станины.

Перед началом сборки рекомендуется создать точный чертеж или использовать готовый, подходящий для поставленных задач.

Если собственных знаний в этом направлении не достаточно, то лучше доверить составление чертежей профессионалам, чтобы исключить ошибки в работе и неполадки в готовом станке.

Необходимый инструмент

Создать полноценный или настольный мини агрегат невозможно без набора инструментов:

  • электродрель (ручная);
  • сверла разного диаметра;
  • напильники (у них должно быть особое покрытие с разной зернистостью);
  • болгарка;
  • диски, позволяющие резать и шлифовать;
  • сварочный аппарат;
  • швеллер;
  • уголок из металла с толстыми стенками;
  • трубы (2 штуки) с разным диаметром для того чтобы можно было вставить их друг в друга;
  • полоска стальная 2 см;
  • полоска стальная 4 см;
  • ремень для привода (потребуется накинуть).

Для крепления элементов необходимо приобрести гайки, шурупы, болты.

Приступаем к работе

Прежде чем начать работать, необходимо внимательно изучить имеющиеся чертежи. Рекомендуется проверить наличие всех инструментов и расходных материалов. Изготовить потребуется станину и раму – основу будущего агрегата.

Станина

Для изготовления этого элемента потребуются швеллера. Подготовленные части конструкции нужно присоединить друг к другу. Для этой цели применяется сварочный аппарат. Для того чтобы поставить электрический станок для заточки ножей, нужно в качестве основы положить лист толстой фанеры.

Этот элемент станка устанавливается на станине. Сделать потребуется так, чтобы оставить возможность в последствие свободно передвигать узлы и части конструкции, согласно заданной программе по созданию деревянной детали. Для укрепления также используется лист толстой фанеры, которая удерживает станок и обеспечивает дополнительную опору.

Шпиндельная коробка

Для изготовления этой части конструкции потребуется напильник. Металлообрабатывающий агрегат позволяет выполнить заточку за короткий срок. Формовка должна быть произведена в двух точках: в месте расположения лезвия и в хвостовой части. После этого потребуется сделать ручку с фиксаторным кольцом.

Мотор: используем подручные средства

В качестве мотора могут быть использованы работоспособные элементы от дрели или старых стиральных машин. Основная рекомендация – следить за исправностью элемента. Мощность может быть разной, чаще всего имеются варианты 1200-2000 Вт.

Мотор от стиральной машинки

В основе должны использоваться асинхронные двигатели, чтобы можно было направлять движение всех элементов в конструкции. Основная характеристика для подходящего мотора – трехфазность. Во время сборки самодельного агрегата важно, чтобы устройство было исправно и могло выдавать требуемую частоту вращения. Также можно отрегулировать показатель с помощью изменения диаметра шкивов.

Во время проведения монтажных работ необходимо оборудовать станину специальной пластиной. Этот элемент фиксируется на воротных навесах и обеспечивает прижатие ремешка так, чтобы не происходило движения. Если позволяют чертежи, то можно установить на площадку педаль – она поможет изменять количество оборотов мотора в период обработки заготовки из дерева.

Станок на основе дрели

Изготовить станок своими руками можно, используя старую, но исправную дрель. Подобный вариант поможет сэкономить финансы, так как не потребуется приобретать несколько отдельных деталей. Дрель может стать основной частью мотора будущего токарного станка.

Бабки

Эти узлы имеют важное значение для работоспособности агрегата и функционала, который он сможет выполнять. Чертежи помогут создать бабки самостоятельно, если станок решено производить собственными силами.

Передняя бабка

Компонент деревообрабатывающего агрегата состоит из двух корпусов (категория подшипниковых). Высота оси шпинделя над основанием начинается от 12 см. Также используется подшипниковый блок, высотой 7 см. Диаметр вала до 4 см. Имеющиеся чертежи указывают места крепления и соединения.

Задняя бабка

Для изготовления этой части конструкции нужно учитывать, что состоит она из 4 компонентов:

  • основание – производится из уголка, произведенного из стали, высота до 10 см;
  • направляющая или наружная часть – в создании участвует трубка с размерами 4Х15 см. В заднюю часть нужно вставить пробку с отверстием 8 мм;
  • внутренняя трубка – габариты 2 см;
  • приводной винт – на него нужно нанести резьбу, чтобы иметь возможность накрутить гайку во внутренней трубке.

Нужно следить за тем, чтобы передняя и задняя бабка находились на одной линии.

Подручник

Элемент состоит из двух составляющих частей. Основной материал для изготовления – металлические уголки. Габариты 3 см и 5 см. Соединить уголки потребуется при помощи сварочного аппарата. Шов должен располагаться в длину. После осуществления этого этапа должно получиться две детали: 26 см – настраиваемый элемент и 60 см. Угол должен быть прямым.

Сборка

Самодельный станок для обработки деревянных элементов необходимо собирать согласно имеющемуся чертежу. Детали устанавливаются последовательно.

В первых рядах важно обеспечить устойчивость рамы и опор, чтобы тяжелые компоненты устойчиво располагались и была возможность производить требуемые типы работ.

Советы по работе

Выполняя сборки в условиях домашней мастерской, нужно соблюдать правила и следовать советам. Основные рекомендации:

  • деревянная заготовка должна располагаться на рабочей поверхности так, чтобы она могла вращаться, но сдвигаться не должна;
  • заготовка должна иметь необходимую форму до момента обработки резцами;
  • для придания формы используются рашпили (их нужно прижать плоскостью).

Также нужно помнить о том, что начинать работу по обработке рекомендуется на малых оборотах мотора, чтобы иметь возможность устранить все несовершенства деревянной заготовки или куска древесины. Создавать станок или использовать готовый требуется с набором определенных знаний и умений, иначе функционал не будет давать ожидаемого результата.

Ссылка на основную публикацию
Adblock
detector